Non-Standard Models of Arithmetic

Theorem: The arithmetical truth $\forall x \forall y x + y = y + x$ is not a FOL consequence of PA.

Proof: For $\forall x \ \forall y \ x + y = y + x$ to be a FOL consequence of PA, it needs to be true that for all possible interpretations that make PA true, the interpretation makes $\forall x \ \forall y \ x + y = y + x$ true as well. We will show, however, that there exists an interpretation in which PA is true, but in which $\forall x \ \forall y \ x + y = y + x$ is false. Here it is:

Interpretation: N⁺²

Domain: The set of objects $\{q_0, q_1, d_0, d_1, d_2, ...\}$ (in other words, an infinite number of objects d_i , together with two additional objects q_0 and q_1).

$$N^{+2}(0) = d_0$$

 $N^{+2}(s) = s^{+2}$, where:

$$s^{+2}(q_0) = q_0$$

 $s^{+2}(q_1) = q_1$
 $s^{+2}(d_i) = d_{i+1}$

 $N^{+2}(+) = +^{+2}$, where $+^{+2}$ is given by following table:

++2	У					
	x + ⁺² y	q_0	q_1	d _j		
	q_0	q_0	q_0	q ₀		
х	q1	q_0	q_0	q_1		
	di	q_0	q_0	d _{i+i}		

 $N^{+2}(\mathbf{x}) = x^{+2}$, where x^{+2} is given by following table:

x ⁺²	У					
	x x ⁺² y	q_0	q1	d ₀	dj	
	q_0	q_0	q_0	d ₀	q_0	
х	q ₁	q_0	q_0	d ₀	q_0	
	d _o	q_0	q_0	d ₀	d ₀	
	di	q_0	q_0	d ₀	d_{i^*j}	

It is easily verified that on this interpretation, all axioms of PA are true, and yet $\forall x \ \forall y \ x + y = y + x$ is false. In fact, many other arithmetical truths no longer hold, such as $\forall x \ x + s(0) = s(0) + x$ and $\forall x \ \forall y \ x \ x \ y = y \ x \ x$. Also, by defining Even and Odd in the usual way, q1 is neither Even or Odd!