## Non-Standard Models of Arithmetic

Theorem: The arithmetical truth $\forall x \forall y x+y=y+x$ is not a FOL consequence of PA.

Proof: For $\forall x \forall y x+y=y+x$ to be a FOL consequence of PA, it needs to be true that for all possible interpretations that make PA true, the interpretation makes $\forall x \forall y x+y=y+x$ true as well. We will show, however, that there exists an interpretation in which PA is true, but in which $\forall x \forall y x+y=y+x$ is false. Here it is:

Interpretation: $\mathrm{N}^{+2}$

Domain: The set of objects $\left\{q_{0}, q_{1}, d_{0}, d_{1}, d_{2}, \ldots\right\}$ (in other words, an infinite number of objects $d_{i}$, together with two additional objects $q_{0}$ and $q_{1}$ ).

$$
\begin{aligned}
\mathrm{N}^{+2}(0)= & d_{0} \\
\mathrm{~N}^{+2}(\mathrm{~s})= & \mathrm{s}^{+2}, \text { where: } \\
& \mathrm{s}^{+2}\left(\mathrm{q}_{0}\right)=\mathrm{q}_{0} \\
& \mathrm{~s}^{+2}\left(\mathrm{q}_{1}\right)=\mathrm{q}_{1} \\
& \mathrm{~s}^{+2}\left(\mathrm{~d}_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{i}+1}
\end{aligned}
$$

$\mathrm{N}^{+2}(+)=+^{+2}$, where $+^{+2}$ is given by following table:

| ${ }^{+2}$ | y |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x | $\mathrm{x}+{ }^{+2} \mathrm{y}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ | $\mathrm{~d}_{\mathrm{j}}$ |  |
|  | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ |  |
|  | $\mathrm{q}_{1}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ |  |
|  | $\mathrm{~d}_{\mathrm{i}}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{~d}_{\mathrm{i}+\mathrm{j}}$ |  |

$\mathrm{N}^{+2}(\mathbf{x})=\mathrm{x}^{+2}$, where $\mathrm{x}^{+2}$ is given by following table:

| $\mathrm{x}^{+2}$ | y |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x | $\mathrm{x} \mathrm{x}^{+2} \mathrm{y}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{1}$ | $\mathrm{~d}_{0}$ | $\mathrm{~d}_{\mathrm{j}}$ |
|  | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{~d}_{0}$ | $\mathrm{q}_{0}$ |
|  | $\mathrm{q}_{1}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{~d}_{0}$ | $\mathrm{q}_{0}$ |
|  | $\mathrm{~d}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{~d}_{0}$ | $\mathrm{~d}_{0}$ |
|  | $\mathrm{~d}_{\mathrm{i}}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}$ | $\mathrm{~d}_{0}$ | $\mathrm{~d}_{\mathrm{i}^{*} \mathrm{j}}$ |

It is easily verified that on this interpretation, all axioms of PA are true, and yet $\forall x \forall y x+y=y+x$ is false. In fact, many other arithmetical truths no longer hold, such as $\forall x x+s(0)=s(0)+x$ and $\forall x \forall y x x y$ $=y \times x$. Also, by defining Even and Odd in the usual way, q1 is neither Even or Odd!

